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Linearized thin-wing theory of gas-centrifuge scoops 

By TAKE0 SAKURAI 
Department of Aeronautical Engineering, Faculty of Engineering, Kyoto University 

(Received 28 August 1979 and in revised form 19 December 1979) 

We study a steady hypersonic rotating flow of a perfect gas past a system of thin 
stationary scoops in a gas centrifuge of annulus type. The gas is assumed inviscid; 
its ratio of specific heats is assumed to be approximately 1. 

The scoops are set at  zero angle of attack and are periodic with respect to the 
azimuthal variable. The flow is assumed to be a three-dimensional small perturbation 
on a basic state of rigid-body rotation. New scaling laws are proposed as appropriate 
to realistic operating conditions of gas centrifuges. Basic equations, boundary condi- 
tions and shock conditions are linearized for a weakly hypersonic flow by an analytical 
procedure similar to that used in the thin-wing approximation in high speed aerody- 
namics. The solution of the basic equations is obtained by the eigenfunction expansion 
method. The solution provides us a simple addition theorem for the scoop drag which 
makes the resultant drag of a system of several scoops equal to the product of the 
number of scoops and the drag of a standard system with a single scoop. The solution 
makes it clear that despite the above addition theorem, the scoops interact in their 
effects on the flow. 

1. Introduction 
From a gasdynamic viewpoint, scoops in Zippe-type gas centrifuges (Zippe 1960) 

are stationary bodies placed in a hypersonic rotating stratified flow. Scoop flow has 
been studied hitherto by an axisymmetric model with differentially rotating disks 
(see, for example, Hultgren 1978; Landahll977; Matsuda & Hashimoto 1976; Schmidt 
1972). This model gives us insight into the way a scoop affects meridional circulation. 
Also there is a numerical study of three-dimensional flow around an obstacle by 
Elsholz (1977). Cenedese & Cunsolo (1979) proposed a model of three-dimensional 
structure of the scoop flow. Suzuki & Mikami (1979) made an experimental study of a 
scoop flow for cases of slow rotation. As obstacles in a hypersonic flow, however, the 
scoops are expected to induce a system of shock waves which penetrate far into much 
of the interior of the flow. These waves cause the flow field to be far from axisym- 
metric. The drag force experienced by the scoops is balanced by the spin-down 
torque on the rotating cylinder of the centrifuge. Also entropy jumps across shock 
waves cause an irreversible radial motion of gas particles. To understand these 
aspects quantitatively, it is necessary to establish for a scoop flow a model that is not 
axisymmetric. 

The purpose of this paper is to give a linearized thin-wing theory of scoops for 
weakly hypersonic flows by which the axially unsymmetric aspects of scoop flows 
mentioned above can be predicted analytically. 

Let us look at  operating conditions of gas centrifuges which can be expected on the 
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z =  0 

(b)  

FI~URE 1. Geometry of the scoop mounting: (a) planform of the mounting, in which the breadth 
of the scoop is exaggerated for clarity; ( b )  front view of the scoop; (c) side view of the scoop. 

basis of data published by Zippe (1960). The radius and the height of the centrifuge 
are 10 and 400 cm, respectively, the peripheral speed is 500-800 m s-l and the chord 
length of the scoop as an aerofoil is 1 cm. Because the sound speed at room tempera- 
ture in UF, is 90 m s-l, the above peripheral speeds correspond to Mach numbers 
5.6-8.9. For a monatomic or diatomic gas, a flow having this range of Mach numbers 
has so large a kinetic energy that the gas temperature rises to 1000 K or higher behind 
a shock front (Chernyi 1961, pp. 1-16; Hayes & Probstein 1966, pp. 1-31). The effects 
of dissociation of the gas molecules become important in such circumstances. Because 
UF, is multimolecular, the ratio of its specific heats is nearly 1 (in fact it  is 1-07); the 
temperature rise behind a shock front is thus not very large and the effect of disso- 
ciation may therefore be neglected. The Reynolds number with respect to the peri- 
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pheral density and speed and the chord length of the scoop is of the order of lolo. The 
effects of viscosity can thus be neglected. The contribution of a small segment of the 
scoop to the local drag is proportional to the local density which decreases rapidly with 
increasing distance from the periphery. Thus to estimate the total drag on the scoop, 
we need consider only the region near the periphery. Finally, the chord length of the 
scoop can be taken to be of the order of the cylinder radius divided by the peripheral 
Mach number. 

In accord with the above parameter survey, let us consider a narrow annulus 
bounded by two concentric circular cylinders of infinite length which rotate with the 
same angular velocity (see figure 1).  The inner cylinder is divided into two parts by 
a plane gap of infinitesimal width which is perpendicular to the stationary axis of 
rotation. The chord length of the scoop is of the order of the cylinder radius divided 
by the Mach number. The scoop has sharp edges, is symmetric with respect to its 
chord line and has an infinitesimal thickness ratio. The scoops are attached rigidly 
to the stationary axis by infinitesimally thin plates through the gap. The angle of 
attack of the scoop is zero with respect to the azimuthal direction. The plan form of 
the mounting is periodic with respect to the azimuthal variable (see figure 1) .  The 
annulus is filled with an inviscid perfect gas whose ratio of specific heats is only 
slightly greater than 1. The basic flow is a rigid body rotation at  the angular velocity 
of the cylinders. The peripheral Mach number is much larger than 1 and the distance 
between cylinders is several times the radial density scale height. We restrict our 
study to a continuum treatment and to weakly hypersonic flow: The effect of the 
scoops is taken as being a small disturbance of this basic state, or putting it in another 
way, we regard the rigid body rotation as a ‘free stream ’ in which the thin stationary 
scoops are immersed periodically. The flow is analysed by a method similar to the 
linearized thin wing theory in high speed aerodynamics (see Chernyi 1961, pp. 161- 
171, and Hayes & Probstein 1966, pp. 45-54, for the applicability of thin wing theory 
to a weakly hypersonic flow). 

Before detailed discussion of the analysis, let us survey physical aspects of the scoop 
flow qualitatively. Because the spanwise direction of the scoop is parallel to the 
centrifugal acceleration, the scoop flow is similar to river flow past a pier of a bridge. 
In  the case of a river, the horizontal acceleration resulting from the blocking effect 
of a pier causes vertical acceleration in virtue of Bernoulli’s relation. In  the case of 
the scoop flow, the azimuthal component of the velocity changes as the gas flows 
past the scoop. This ‘horizontal’ variation of velocity causes the temperature and 
hence also the density of the gas to vary and therefore the centrifugal acceleration 
gives rise in turn to a radial motion. Because the configuration is periodic, the dis- 
turbance caused near the scoop trails downstream to influence the flow around the 
other scoops and to feed back to the flow around the original scoop. The most interest- 
ing product of the present study, however, is a simple addition theorem for the 
resultant drag of the scoop system, despite the interaction between scoops. Let us 
compare a system A of n scoops with a standard system B having a single scoop. 
The resultant scoop drag of system A is just n times the scoop drag of system B. This 
addition theorem agrees well with Zippe’s drag experiment (Zippe 1960). 

In 3 2 basic equations, boundary conditions and shock conditions are discussed on 
the basis of the linearized thin wing theory in weakly hypersonic flows and new scaling 
laws are proposed. In 0 3 the basic equations are solved by use of an eigenfunction 
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expansion. In Q 4 a new addition theorem for the resultant drag of a system of scoops is 
derived and some numerical results are given. For clarity the exact basic equations, 
boundary conditions and shock conditions are given in the appendix. 

2. Basic equations and proposed new scaling laws 
Let us consider the model shown in figure 1 (see Q 1 for detailed explanation). The 

chord length of the scoop is of the order of the cylinder radius divided by the peri- 
pheral Mach number. The distance between the cylinder is of the order of several 
times the radial density scale heights. The effect of the system of stationary scoops 
is assumed to be a steady three-dimensional small disturbance superposed on a basic 
state of rigid-body rotation at  uniform temperature. 

We now introduce the following dimensionless variables for physical quantities 
with respect to the rest frame of reference. We expect these quantities to have values 
of order 1 for the flows we study here: 

r = (F- 1) /e2 ,  F = F / F o ,  8 = BG,,, z = ZG02/(F,~2); (1) 

E i"2 n 2  

2' RTO 
Go, = (Goy)*, Go, = 1 - 2  Go = A; (4) 

In  the above (F, 3,Z) is a system of cylindrical co-ordinates in a rest frame of reference, 
(qr, i&, qZ) the velocity, p the density, $5 the pressure, T the temperature, H the angular 
velocity of the cylinder, E the gas constant, y the ratio of the specific heats, and % 
the local height of the scoop surface (see figure 2). The overbars on letters refer to the 
original dimensional physical quantities (3 is non-dimensional as an exception) : i", is 
the radius of the inner cylinder, To is the uniform temperature of the basic state. 

The suffix B refers to the basic state; F0G61( = C) in ( 5 )  is the chord length of the 
scoop. The parameter E is the thickness ratio of the scoop. As the parameter survey 
in Q 1 suggests, el, e2 and E are all assumed to be approximately 0.01. It is important to 
note that the smallness of these parameters stems from different physical causes: el 
is small for polyatomic gases, E, is small for high peripheral velocity on the boundary 
and E is small for thin scoops. Therefore it makes sense (physically as well as mathe- 
matically) to construct an expansion in which el, c2 and e3 are independent parameters. 
It is interesting that e3 is of the same form as the hypersonic similarity parameter, i.e. 
e3 is of the order of a multiple of the thickness ratio of the scoop and the Mach number 
of the flow (Chernyi 1961, pp. 25-54; Hayes & Probstein 1966, pp. 32-47). If E is of 
the order of 0.1, aa may be expected for practical centrifuges, c3 becomes of the order 
of 1. Then the flow is hypersonic and the effects of nonlinear terms in the basic equations 



am centrifuge scoops 261 

6 

e= 0 e=e, 8 = 8 ,  

FIGURE 2. (8, Z) cross-section of the scoop mounting. The chord length of the scoop is 8, and 
the spacing between scoops is 8,. Because the distance between the cylinders is small in com- 
parison with the radius, it can be taken aa the cross-section at an arbitrary radius. 

become important. If e iS of the order of 0.01, as is assumed above, e3 is of the order of 
0.1 and is much smaller than 1. The flow is then weakly hypersonic and the usual 
methods of thin wing expansion theory can be applied (see Ward 1955, pp. 1-31, for 
the thin wing expansion theory). For simplicity we restrict attention henceforth to 
weakly hypersonic flow. 
We approximate the typical physical quantity q by a linear function of el, e2 and e3: 

q = qO+"lPll + e Z q l Z + e 3 ~ 1 3 *  (6) 

We discard terms of order higher than 1 in el, e2 and e3, and we do not calculate the 
coefficient q13 at all. Substituting (6) into the basic equations and collecting like powers 
of el and ez, we obtain the following equations. 

Order 0 :  
0 = Po,e + W,m 0 = %,e +Po,e, (71, (8) 

0 = Wo,e+Po,z, PO = PO- (919 (10) 

Order e2: 
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Here a co-ordinate preceded by a comma in the suffix indicates a partial derivative 
with respect to that co-ordinate. In  the equations of order 0, we use the fact that 
Uo = 0 and a/ar = 0 to omit vanishing terms. The form of these equations is the same 
as in the linearized theory of two-dimensional supersonic flow. It is to be noted, how- 
ever, that our approximation of order 0 corresponds to an isothermal situation. 
Inspection of (7),  (8), (9), ( lo),  (12) and (16) indicates that the adiabatic expansion 
and contraction related with the meridional motion induced by the scoop causes 
radial motion by the radial buoyancy force subject to the centrifugal acceleration. 

Substitution of (6) into boundary conditions on the scoop and on the centrifuge 
cylinders gives us the following : 

Conditions of order 0:  

Conditions of order el : 

Conditions of order ez: 

W,(,=o = he, uolr=o = UoJ,, = 0. (22), (23) 

K1Iz=o = 0, Ulll,=O = %Ir=?, = 0. (241, (25) 

K2LO = 0, U12lr-0 = UlPlr=r, = 0. (26)s (27) 

Here re refers to the outer cylinder, z = 0 to the symmetric plane of scoops and sub- 
script 8 to differentiation with respect to 8. In  (22), h is determined by the shape of 
the cross-section of the scoop and the form of the mounting. For simplicity we assume 
that the scoop is mounted at zero angle of attack with respect to the azimuthal variable 
and that h depends on 0 only. The (0, z )  cross-section of the scoop mounting is shown 
in figure 2. 

Because our. flow field extends to infinity in the axial direction, we must prescribe 
an asymptotic behaviour of the solution. In  accord with von KArmAn’s ‘zone of 
action’ rule (John 1969), we impose the following conditions on the approximations 
at  each order: 

characteristic surfaces of wave modes of the solution must subtend acute 
angles from the downstream direction of the basic flow of rigid body rotation. 

Substitution of (6) into shock conditions gives us the following conditions. 

Shock conditions of order 0 :  

(28) 

[pO-WO] = 0, [J4++0] = 0, [UO] = 0. 

Shock conditions of order el: 

bii-W,~+PoI = 0, [%+K+W,I = 0, [u11] = 0. (32), (33), (34) 

Shock conditions of order 6,: 

[p12-K2+4GI = 0, [K2+ G-rK3-4J4I = 0, [UiJ = 0. (35), (36), (37) 

Here brackets refer to the jump of the bracketed quantities across the Mach waves 
of the order 0 (see figure 2 as regards the Mach-wave geometry). In deriving the 
above, our procedure makes us assume that the shock waves are weak. As is shown 
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by Ward (1955, pp. 70-72), the normal component of the law of conservation of 
momentum across the shock front degenerates to the law of conservation of mass and 
the law of conservation of energy is used to  determine the relation between the shock 
angle and the deflexion angle of the velocity vector. It is interesting that the shock 
conditions (29)-( 37) can also be derived by mtegrating our equations, order by order, 
across the Mach waves of zeroth order: 8 z = const. 

Our mathematical problem is to solve, for example, equations (1 1)-( 16) subject to 
the boundary conditions (24), (25) and (28) and the shock conditions (32)-(34). The 
formulation is completely analogous to that in the linearized supersonic aerofoil 
theory and the solution can be determined uniquely. 

3. Solution of the basic equations 
The solution of the problem of order 0 is 

Po = P o  = wo = -6 = qe-z ) ,  (38) 

where we restrict attention to the upper half of the flow. By the symmetry of the flow, 
the lower half is readily obtained. 

Elimination procedures applied to (1 1),  (12) and (14) give 

P11,r +P i i ,w  -Pii ,ee +Pii ,zz = -Po* (39) 

The shock conditions (29) and (30) show that the right-hand side experiences a jump 
at the zeroth-order Mach wave. The solution of (39) subject to the boundary conditions 
(28) is 

where 

pi1 = - r ~ o + ~ i l R ,  ~ 1 1 H  = C %(r)Xk%(8,z), (40) 
m. n 

and where 8, and 8, are defined in figure 2. The special form of R,(r) is determined 
in accord with the boundary conditions (26). 

Substitution of (40) into (12)-( 14) gives 



XK) = - S,, ~ X P  [ - amn 21 (amn sin Y m  - bmn ~ 0 s  Y m  6 )  < "''1 
(52) 

Substitution of (47), (49) and (51) into the shock conditions (32)-(34) shows us 
that U&, V,,, and w1,H are continuous across the shock front. We can, therefore, 
use the same system for the coefficients amn and bmn without regard to the region 
with which we are concerned. We assume that h has a Fourier expansion in 0 Q 8 < el : 

3/m 1 amn COB tmn + bm, sin L n ,  mo < m. 

Y m  16nnr: 
amn (r: + 4nZn2)Z' amno = - { ( - 1 ) n e h u - 1 }  

To derive these statements we have used the orthogonality relations 

and the integral relations 

8n'nr, 
e*rRntdr = l 2  n z{ (  - 1)m'ehu- I}. 

4. Addition theorem for the resultant drag on a system of scoops and 
numerical examples 

Substitution of our scaling laws (1)-(5) into the drag formula 

where a is the inclination angle of a tangent to the cross-section of the scoop as shown 
in figure 2 and where is the drag on a single scoop, gives us 

244 P. 8. Marczcs 
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FIGURE 3. Factor ?o = clc3po in (3) and D,l in (65). The former gives US an idea about the 
temperature rise effected by the shock wave and the latter about the a,-dependence of the 
SCOOP drag. Calculations are performed with = 0.07, E = 0.05, To = 300 and ( f ,  - F,) F,' = 0.05. 

Substitution of the solutions in $ 3  into (64) gives 

J O  

where for convenience we use the original azimuthal variable 8 to discuss the drag 
of a scoop with fixed aerofoil shape and pBp is the basic pressure on the outer cylinder. 
An important aspect of (65) is its independence of 8,: In a system of many scoops, 
each scoop contributes to the total drag exactly the drag it would experience, did the 
system consist of that one scoop alone. The resultant drag of a system of scoops, 
therefore, is the drag of a standard system with a single scoop multiplied by the 
number of scoops. This simple addition theorem does not imply that the scoops fail 
to interact, for the velocity formulae in $ 3  include 8, as a parameter. This fact clarifies 
the existence of the mutual interaction between scoops. 

Figure 3 shows the factor Drl as a function of Go. The factor 8, e3 To is also given in 
figure 3.  Calculations are performed with el = 0-07, E = 0.05, Po = 300 and 

The latter gives us an idea about the temperature rise behind the shock front. 
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50 I00 I50 
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FIGURE 4. U,,-distribution of case 1 on the plane of symmetry z = 0 as a function 
r = 0-5. The scoop profile is given as 
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FIGURE 4. U,,-distribution of case 1 on the plane of symmetry z = 0 as a function 
r = 0-5. The scoop profile is given as 

sin 2ne/Bo, 0 < 8 < 8,, 

with 8, = n/(10,/3) and 8, = in. The scding unit of the abscissa is 4/20. 

of 8 with 

-0.56 
50 I00 150 

0 

FIGUR-E 5. U,,-distribution of case 1 on the symmetric plane of z = 0 ria a function 
of 8 with r = 2-5. The format of the figure is the same EM in figure 4. 

To gain an idea of the meridional flow, we calculate U,, and W,, for two cases in 
which 

In the calculations, r, = 5.0, 8, = n/(10,/3); in case 1 ,  6, = in, while in case 2, 
6, = #n. The double series (47) and (51) for U,, and W,, have been summed to the 
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FIGURE 6. U,,-distribution of case 1 on the plane of symmetry z = 0 as a function 
of 6 with r = 4.5. The format of the figure is the same as in figure 4. 

- 0 . 6 0 1  I I I I 1 I I I I I I I I I I I I 
50 100 150 

e 
FIGURE 7. U,,-distribution of case 1 along a line of z = 5.0 and r = 2.5 88 a function 

of (6- 5.0). The format of the figure is the same aa in -re 4. 

terms with m = n = 35; there was no appreciable difference from the results at  
m = n = 25. 

Figures 4-6 give U,, in case 1 on the plane of symmetry z = 0 as functions of 8 with 
r = 0.5, 2.5 and 4.5, respectively. In a weakly hypersonic flow past a usual aerofoil, 
disturbances caused by the aerofoil propagate along Mach waves emanated from the 
aerofoil. As von KBrmBn’s zone of action rule predicts, the aerofoil has no influence 
upstream. In a weakly hypersonic rotating flow past centrifuge scoops, the periodicity 
of the flow makes the upstream and the downstream parts interchange. Von KBrmBn’s 
zone of action rule predicts an asymptotic radiation condition (28) far from the scoops. 
The space between scoops is full of disturbances caused by the scoops. This effect is 
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FramE 8. U,,-distribution of 0888 2 along a line of z = 0 end r = 2.5 as a function of 8 with 
the same scaling unit of 0 ~EI  in figure 4. The scoop profile haa the same analytic expression as 
in case 1 with the same value of 8, and with 8, = Qn. Because the abscissa extends only up to 
8 = )n, a part of the flow field near the next scoop ( i a  the part with in 6 8 < fn) is dis- 
carded in this figure. 
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-4.00 
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FIGURE 9. W,,-distribution of caae 1 on a plane of z = 0.5 as a function of 8 with r = 0. The 
scaling unit is the same EM in figure 4. Because the Mach wave emanated from the leading edge 
of the scoop is expressed as 8 = z, the Mach wave corresponds to the location of 8 N 56 in the 
fiv. 

shown dramatically in the figures 6 6 .  Figure 7 shows U,, in case 1 along the line 
z = 5.0, r = 2.5 aa a function of 0 - 5.0. We can recognize that properties of the Ull- 
configuration propagate along Mach waves with simultaneous modulation. Figure 8 
gives U,, in case 2 along the line z = 0, r = 2-5 as a function of 0 with the same scaling 
unit as in case 1. As this figure makes clear, the flows in cases 1 and 2 are completely 
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e 
FIUURE 10. W,,-distribution of case 1 on 8 plane of z = 0-5 as a function of 8 with r = 2.6. 

The format of the figure is the same aa in figure 9. 

5.00 

W 

0 

-5.00 
50 100 i150 

e 
FIUURE 11. W,,-distribution of cam 1 on a plme of z = 0.5 aa a function of 8 with r = 5.0. 

The format of the figure is the same as in figure 9. 

different. There is mutual interaction between the scoops, despite our simple addition 
theorem. 

Figures 9-11 give W,, in case 1 on the plane z = 0.5 aa functions of 8 when T = 0, 
2-5 and 5.0, respectively, with the same scaling unit of 8 aa in figure 4. Because the 
Mach wave from the leading edge is located on the plane 0 = z, the Mach wave corre- 
sponds to a location of 8 - 55 in these figures. We can again recognize appreciable 
disturbances in the space between the scoops. It is also interesting that the configura- 
tion on T = 2.5 has a character combining those on the inner and the outer side walls. 
Figure 12 give W,, in case 1 along the line z = 5.0, T = 2-5 as a function of 8 - 5.0. The 
figure makes it clear that the character of the W,, configuration propagates along 
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FIOTJRE 13. Wl,-distribution of caae 2 on line of z = 5.0 and r = 2.5 a8 a function of 8-  5.0. 
The scoop profile and the format of the figure is the same as in figure 8. 

Mach waves with simultaneous modulation. The important point here is the fact 
that appreciable disturbances are localized in a narrow bundle of Mach waves and 
the remaining space between scoops remains relatively ‘calm’ as far as W,, is con- 
cerned. Figure 13, which gives W,, in case 2 along the line z = 5.0, r = 2-5 as a function 
of 8 - 5.0 with the same scaling unit as in figure 4, also shows the existence of a similar 
bundle of Mach waves along which an appreciable disturbance in W,, propagates. 
To obtain the full expression for W ,  we must superpose upon W,, contributions from 
W,. While the localization of appreciable axial disturbance, arising from the fact that 
W, itself is localized in a bundle of Mach waves bounded by the leading and the trailing 
Mach waves, may reflect our having applied a linearized theory, I believe this locali- 

FIGURE 12. W,,-distribution of case 1 on line of z = 5.0 and r = 2.5 as a function of 8-  5.0. 
The format of the figure is the same as in figure 9. 
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zation is physically correct. Because the above localization causes strong azimuthal 
variation of the axial flow, we must be careful not to interpret too literally the separ- 
ation efficiency calculated on the assumption of axisymmetric axial flow. 

The author expresses his thanks to Dr K. Hashimoto for helping to prepare the 
computer program for the automatic plotting schemes. He thanks also Dr M. E. 
McIntyre and the referees for their valuable suggestions and enlightening discussions, 
which helped him improve the presentation. He thanks hally Professor C. Truesdell 
for his valuable suggestions which helped him much to correct the presentation of 
the text. 

Appendix 
For the sake of clarity, exact statements of the basic equations, boundary conditions 

and shock conditions are given here. Also the derivation of the approximate equations 
is explained. 

The equations refer to the rest frame of reference? 

ap i a ~ p q ,  iapqe ame -+=-+=-+- = 0, ai T ar r aB az 

where 

and the other notations are used in the main text. 
The boundary conditions a m  

- a j  i j e a j  - a! 
qrz+ig+qe- az = 0 on each scoop, 

(jr = 0 on P = Po and ro[ = Po( 1 +roe2)],  

where each scoop is expressed by 

and To and To and the radius of the inner and the outer cylinders, respectively. 
The shock conditions are 

[iij,] = [?jt t l]  = [ijt2] = [jj + = [Ep F + S i j 3  = 0 on the shock front, (A 11)  

where the suffix n refers to the normal vector of the shock front, t i  and t2 to the two 
directions on the tangent plane of the shock front and square brackets to the jump 
of the bracketed quantity across the shock. The shocks are assumed to emanate from 

t Because the scoops are at rest in a rigidly rotating ‘free stream’, t.his is the only kind of 
frame with respect to which the flow field can be steady. 
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\ti = e z  - e,  " I  

FIUURE 14. Local configuration of a shock front projected on the common tangent plane of 
Qi and Qa. 

the leading and the trailing edges of scoops (see figure 2) and the local configuration 
on a shock is sketched on figure 14. 
Our problem is to solve (A 1) through (A 6) subject to boundary conditions (A 8) 

and (A 9) and shock conditions (A 11). Because of the scoop configuration a de- 
scribed in $ 1  (see figure l), the solution is expected to be periodic with respect to the 
azimuthal variable with period 8,. We can restrict discussion to the flow field limited 
by bow waves of neighbouring scoops (see figure 2). 

The approximate equations (7) through (21) and the boundary conditions (22) 
through (27) can be derived by straightforward substitution of the scaling laws (1) 
through (5) and the expansion formula (6) into (A 1) through (A 6), (A 8) and (A 9), 
then collecting terms of like powers in the expansion parameters. As for the shock 
conditions, we assume, in accord with our assumption that perturbations are small, 
that the difference between the shock angle and the Mach angle is small in comparison 
with the Mach angle. Substitution of the scaling laws (1) through (5) and the expansion 
formula (6), combined with the above assumption regarding the shock angle, into the 
shock conditions (A 11) give us (29) through (37). 
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